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Image Processing
Reid B. Porter

The goal of image processing is to robustly extract useful, high-level informa-
tion from images and video. The type of high-level information that is useful
depends on the application. Examples of applications include object detection
and tracking for surveillance, defect detection for automated production sys-
tems, and scene classification for remote sensing and map annotation. Extract-
ing high-level information is a difficult research problem and many different
algorithms have been suggested.

Image and video processing have been significant application drivers for the
reconfigurable computing community since its inception in the early 1990’s.
Prior to modern reconfigurable devices, image and video processing were also
significant application drivers for computer architecture research and VLSI
design. There are two related reasons why this application domain has received
so much attention in the computer architecture community. The first is the
poor, often unacceptable, performance observed in general-purpose processor
implementation. This can be attributed to:

• Large volumes of data.
• Exceptionally high memory bandwidth requirements.
• And real-time processing constraints.

The second is the increased, often incredible, performance gains observed
in custom or application-specific implementation. This can be attributed to:

• Abundant parallelism in both data and algorithms.
• Local and regular data dependencies.
• Simple fixed point arithmetic and logic operations
• Relatively small bit-widths.

Reconfigurable computers have been used most widely, and successfully,
for accelerating low-level image processing algorithms. These algorithms are
typically applied close to the raw sensor data and are characterized by large
data volume. Conceptually, low-level image processing is decomposed into a
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processing pipeline with raw image data (taken from a sensor) as input and
the desired information as output. Figure 1.1 depicts a typical processing
pipeline. Each stage of the pipeline can be a multiple-input, multiple-output
transformation.

Fig. 1.1. A multi-spectral image processing pipeline

• There may be multiple sources of data from multiple sensors and / or mul-
tiple points in time in which case, it can be useful to co-register the data.
The relative displacement between data sources is often useful e.g. depth
information can be recovered from stereo pairs, and motion information
from temporal sequences.

• The image enhancement stage is concerned primarily with removing sensor
noise and other environmental variation and attempts to ’enhance’ an
input image to make subsequent analysis easier.

• Feature extraction is a transformation from the image space, where each
pixel usually represents intensity, to a feature space where pixels represent
more abstract quantities. These quantities are typically application specific
and are chosen to make subsequent processing easier.

• A latter stage of low-level image processing is detection, classification or
segmentation, in which an algorithm assigns abstract labels to image pix-
els. These labels are typically application specific e.g. a non-zero label
specifies a region of interest.

Many variants and extensions of this processing pipeline exist for partic-
ular applications. In terms of Reconfigurable Computer implementation it is
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useful to categorize low-level image processing algorithms based on their data
dependencies. Two broad categories of algorithm are:

Local Algorithms: The algorithm depends on data from a relatively small
(compared to the image size) neighborhood that is local in spatial and tem-
poral dimensions. Examples include, point or pixel operators (such as Band
arithmetic, thresholding), convolution, and motion estimation.

Global Algorithms: The algorithm depends on data from the entire im-
age. Examples include transforms like the fast fourier transform and principle
component analysis as well as statistical histogram techniques.

A general rule of thumb for obtaining speed-up with custom computing
architectures is to minimize the number of times we access data. By defi-
nition global algorithms often require multiple passes through the data and
performance compared to general purpose processors is varied and algorithm
specific. In this chapter we will concentrate on local algorithms. These algo-
rithms are found in all aspects of the low-level image processing pipeline and
they can benefit greatly from Reconfigurable Computer implementation. Re-
ported speed-ups are typically two orders of magnitude compared to general
purpose processors.

1.0.1 Local Neighborhood Functions

Local neighborhood functions (also called sliding window functions and spatial
filters) are used extensively in image processing and computer vision. These
functions are applied at a particular pixel location and their output depends
on a finite spatial neighborhood. The function is applied independently at all
pixel locations and is typically constant across all pixel locations. Figure 1.2
illustrates the how a neighborhood function is applied for a 3 by 3 neighbor-
hood. When local neighborhood functions are applied at edge locations some
of the neighborhood is not defined. The undefined pixels can be assigned a
value of 0, or can be assigned the value of the closest pixel. Another common
approach is to temporarily increase the size of the input image by reflecting
pixel values across each edge.

Fig. 1.2. A neighborhood function is applied to all pixels in parallel
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The neighborhood function of Figure 1.2 can be generalized in several ways
to include a large number of standard image processing algorithms. Neighbor-
hoods can be generated from multiple input images such as color channels
or more generally, spectral dimensions. The kernel is 3 dimensional and the
neighborhood function slides over the 2 spatial dimensions of the image stack.
Point operators such as band arithmetic (average of color channels), clipping,
thresholding and pixel scaling can be considered local neighborhood functions
when we assume a spatial neighborhood size of 1 pixel. These basic operations
are described in detail in most image processing texts [15].

Local neighborhood functions can also receive multiple images in time,
and this is typical in video processing applications. This is different to receiv-
ing multiple spectral inputs. Similar to FIR (Finite Impulse Response) and
IIR (Infinite Impulse Response) filters encountered in signal processing the
neighborhood window has a finite temporal extent and slides through time
as the function is applied at each time step. The kernel is 3-dimensional and
the neighborhood function slides over 3 dimensions (2 spatial and 1 tempo-
ral). Note that in the spatial dimension the neighborhood function is applied
independently at every location, but for the temporal dimension this is not
always the case e.g. neighborhood functions with temporal feedback (IIR).

Local neighborhood functions demand exceptionally high bandwidth to
image data. For example, for a modest 3 band 256 pixel wide by 256 pixel
high color video sequence, a (typical) 7 by 7 spatial neighborhood size and
a 3 frame temporal window, the most general neighborhood function would
require access to 441 pixel values at each image location. To obtain real time
processing rates at 30 frames per second would require access to approxi-
mately 870 million pixels per second. As we will see, most image processing
applications are composed of large numbers of local neighborhood functions
and therefore the bandwidth requirement quickly exceeds what general pur-
pose computing can provide. Fortunately, due to the regular nature of the
memory access across the image array, there are also many opportunities to
optimize the memory access. Reconfigurable computers are ideal platforms to
tailor memory hierarchies and implement algorithm specific address genera-
tion, and therefore great performance gains are possible.

There are two main ways of achieving speedup in local neighborhood func-
tions using Reconfigurable Computers: pixel parallelism and instruction-level
parallelism. The two extremes of this approach are illustrated in Figure 1.3.

Cellular Arrays for Pixel Parallelism

Cellular arrays are a natural model for image processing [23]. They consist
of an array of cells in two, three or more dimensions. Each cell is associated
with an image pixel and each cell has dedicated connections to its local neigh-
borhood. This high-bandwidth local communication is ideal for implementing
neighborhood functions; all pixels are processed in parallel, and the entire im-
age is updated in 1 instruction cycle. FPGAs can implement a programmable,
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Fig. 1.3. Pixel Parallel verse Instruction Parallel

maximally parallel implementation of a cellular array, but can only efficiently
implement a small numbers of cells. Large arrays require multiple FPGAs
and/or time multiplexing, and the I/O required to initialize the array read
results can dominate the computation time.

Image Pipelines for Instruction-Level Parallelism

In this case only one cell, of the equivalent cellular architecture, is imple-
mented. Data is provided to the cell through a continuous stream of pixels.
They are often supplied to the cell one sample at a time, and usually in raster
scan order. This arrangement is often suitable for real-time systems where data
arrives directly from a serial I/O sensor. Since pixels are processed sequen-
tially, the main way to achieve speed-up for an image pipeline is to execute
multiple instructions in parallel. As shown in Figure 1.3 instructions can be
implemented either in parallel (increasing the pipeline width) or in series (in-
creasing the pipeline depth). Unlike cellular architectures, accessing a local
neighborhood within an image pipeline must be carefully considered. All in-
structions in a pipeline are being executed at the same time, and therefore it
may be difficult to provide data to all instructions at the right time.

We have described the two extremes of a pixel parallel verse instruction
parallel design space. In practice any combination of these two extremes may
be used. The optimal design point is dictated largely by the memory archi-
tecture of the particular FPGA and Reconfigurable Computer. Formalizing
and providing tools that can optimize this design choice is a topic of ongoing
research [17].

1.0.2 Convolution

Perhaps the most well known local neighborhood function is convolution,
which is defined in Equation 1.1. A multiplicative weight W is associated
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with each location of the neighborhood {k, l}, collectively known as the ker-
nel K. The output F of the function is the accumulated weighted sum of the
kernel applied at each pixel location {i, j}.

F (i, j) =
∑

k,l∈K

Wk,l ∗ Image(i− k, j − l) (1.1)

By selecting the appropriate weights, convolution can implement low-pass,
high-pass and band-pass frequency domain filters used extensively in image
enhancement and feature extraction. Low-pass filters use positive weights and
are used for image smoothing. High pass filters use a kernel with a positive
center weight and negative outer weights and are used to enhance high fre-
quency components in an image such as edges and fine detail.

One of the first Reconfigurable Computer implementations of convolution
was on the Spash-2 [21]. They used the image pipeline approach and a linear
systolic array implementation. Local memory was used to replace multipliers
and the lack of on-chip memory meant the image width was limited to 32
pixels. Despite these limited resources the timing for a two 3by3 convolutions
applied to a 512 by 512 image was 100 frames per second. A 3 by 3 convolution
implementation which is very similar to the linear systolic array is shown in
Figure 1.4. The image data is assumed to arrive one pixel each clock cycle in
raster scan order. After a fixed latency, this architecture provides access to
the entire neighborhood of data every clock cycle.

Fig. 1.4. A systolic array for 2-D convolution

The architecture in Figure 1.4 places the lowest demand on external mem-
ory bandwidth, but the highest demand on internal memory bandwidth. Each
pixel in external memory is accessed only once but for an image width, W,
and kernel width, M, the FPGA must store ((M-1)*W + M) pixels on-chip.
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Since around 1998, many modern FPGA devices have a the large amount of
on-chip memory and this approach has been widely adopted [16], [18], [3].

The length of the shift register in Figure 1.4 depends on the input image.
If the image is thousands of pixels wide it is unwise to buffer the entire row.
The most common approach is to choose a row length appropriate to the
hardware resources at hand (e.g. 64, 128 or 256 pixels), slice the input image
into strips of this width, and provide these strips as one long, narrow image
to the hardware. Due to the neighborhood, these strips must overlap by a
particular number of pixels in order to produce results that stitch correctly.
This overlap leads to a slight decrease in performance compared to the full
length row buffers. Bosi, Bosi and Savaria estimate that dividing a 1024 by
1024 image into 16 slices reduces the number of registers by a factor of 14.8
for a 3 by 3 convolution, while performance is reduced by 6% [4].

When on-chip memory is not available, row-length shift registers may not
be possible at all. To maintain the pipeline throughput at one convolution
per cycle the design needs to access more than one pixel per clock cycle from
external memory. If we can access M neighborhood pixels per cycle we can do
without the row length shift registers entirely. For example, if the data-width
of external memory is 32 bits and the pixel data width is 8 bits, we can access
up to 4 pixels per clock cycle. For a 3 by 3 convolution we need to access
three pixels from three different scan lines each clock cycle. Since an image
is typically stored in raster scan order in the external memory the memory
access must cycle between the three different scan-lines. On-chip registers can
be used to buffer the three consecutive pixels from each row and maintain
throughput at one convolution per cycle [4].

In the situation just described each pixel is read from memory three times
(once for each row in the neighborhood). To reduce the redundant I/O it is
possible to implement multiple neighborhood functions, each associated with
consecutive rows of the image. The multiple functions exploit pixel parallelism,
and also, share local neighborhood access and therefore the I/O is reduced.
This approach is described as partial loop unrolling by Draper et. al. with
respect to the Single Assignment C compiler [8].

1.0.3 Morphology

The pipelined neighborhood cache in Figure 1.4 can be used for a much wider
class of algorithm than just convolution. Mathematical Morphology defines
a large family of image processing algorithms, which essentially replace the
Weighted Sum function block with a neighborhood order statistic. The kernel
for morphological spatial filters is also called a structuring element or region of
support and defines the set of pixels from which an order statistic is derived.
The shape of the structuring element is very important. The simplest filters
are erosion and dilation. Erosion is defined as the minimum from the set
of pixels defined by the structuring element and dilation is the maximum.
Another popular morphological filter is the median.
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Morphological functions are generally far cheaper to implement with digi-
tal logic than convolution type functions. First, morphology avoids the multi-
pliers that can become expensive for large neighborhood convolutions. Second,
order statistics such as maximum, minimum and median are closely related
to the digital domain. The relationship is described by a technique known
as threshold decomposition, which was first introduced to analyze the median
filter [12]. Threshold decomposition allows gray-valued pixel images to be pro-
cessed with bit-level hardware and Figure 1.5 illustrates the technique for a
1 dimensional median filter. Pixel inputs are first thresholded at all possi-
ble quantization levels; producing a binary stack for each input whose height
is equivalent to the pixel value. Each quantization level is then processed
independently with a positive boolean function. Positive Boolean Functions
(PBFs) are a subset of Boolean logic functions in which no input may be
negated. To regain a gray-valued output we simply sum the binary outputs
from each level. There is a one-to-one correspondence between a PBF and an
order statistic, where each logical AND is replaced by a minimum and each
logical OR is replaced by a maximum.

Fig. 1.5. Threshold decomposition for the median function

Threshold decomposition at first appears to have complexity proportional
to the number of quantization levels (which may be very high) but this in
fact can be reduced to the number of inputs in the filter window. Also, each
stack (associated with both inputs and output) can only make a single tran-
sition from one to zero i.e. within the same stack ones cannot appear above
a zero. This property, known as the stacking property, allows for extremely
efficient implementations. Chen proposes a most significant bit first, bit-serial
implementation which uses a single PBF [5]. When implementing a 3 by, 3
8-bit pixel, erosion on a Xilinx 6200 series FPGA, Woolfries found that imple-
menting 8 copies of the Chen’s implementation used 75% fewer resources and
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was 33% faster than implementing the threshold decomposition in Figure 1.5
directly.

The threshold decomposition approach is particular useful in Reconfig-
urable Computing for implementing order statistics with high complexity,
such as the median, and a large number of inputs. For simple order statis-
tics, such as maximum and minimum the number of comparisons is linear in
the number of inputs, and a direct sorting network can be implemented effi-
ciently. The direct sort can also be used for the median function if the number
of inputs is small [26].

1.0.4 Feature Extraction

We have described the basic neighborhood function building blocks used in
image processing. By combining these building blocks in various ways we can
implement a large number more complex image processing algorithms that
perform Feature Extraction. Feature extraction often has one of two aims:

1. To produce a representation that is invariant to specific image properties
such as rotation, illumination, scale etc.

2. To produce a representation suitable for subsequent processing. These
quantities often represent things like texture or color, but they can vary
greatly depending on the application.

One of the most well known example of feature extraction is edge detec-
tion. Asymmetric weight kernels suggested by Roberts, Sobel, Prewitt and
Laws estimate image gradients in specific directions. A number of these ker-
nels are used in convolution and the outputs are combined to produce a rota-
tionally invariant edge detection. Outputs are typically combined by the sum
of squares, however a sum of absolute values or maximum may be more ap-
propriate in Reconfigurable Computer implementations. Obtaining rotation
invariance through multiple kernels is also used in morphology. Figure 1.6a
shows an example where a linear structuring is used to probe the image for
linear image features such as roads. A maximum is used to combine multiple
outputs during dilation, and a minimum is used during erosion. For the image
processing pipeline architecture, multiple rotations correspond to increased
pipeline width. Considerable memory resources can be saved if multiple rota-
tions share row buffers and neighborhood registers.

Gabor filters provide are another example of where we need to increase the
image pipeline width. The Gabor kernel is defined as a complex plane wave
modulated by a Gaussian distribution. It implements a band-pass frequency
domain filter. For feature extraction, a bank of Gabor filters are implemented,
each tuned to specific spatial frequencies and orientations. The quantity used
in subsequent processing is often the magnitude of the complex convolution
which exhibits invariance to small shifts of the input image. The number of
filters in a Gabor filter bank can be quite large. In this case, it may be more
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Fig. 1.6. Examples of feature extraction: a) rotationally invariant linear features
b) deep morphological pipelines and c) adaptive thresholding

efficient to implement convolutions in the frequency domain. This requires a
Fast Fourier Transform (FFT) and an Inverse FFT, which are available for
most modern FPGAs as third part cores[27].

Many complex morphological algorithms for feature extraction such as
opening, closing, open-close and close-open filters are built by successive ap-
plication of erosion and dilation. Usually the shape of the structuring element
is constant between successive erosions and dilations. As shown in Figure 1.6b
these algorithms can be implemented in the image pipeline architecture by
simply increasing the pipeline depth.

Another class of feature extraction algorithms are locally adaptive, which
means that a neighborhood function is dependent upon some statistic of the
local neighborhood. A popular example is adaptive thresholding in which the
centre pixel is thresholded by the mean or median value of the neighborhood.
Locally adaptive functions define small sub-trees within an image process-
ing pipeline. For implementation within the image pipeline different pipeline
paths must be latency adjusted before they can be combined pixel-wise. The
adaptive threshold example is illustrated in Figure 1.6c.

There are many other examples in feature extraction where algorithms are
implemented by cascading multiple local neighborhood functions. Reconfig-
urable computers gain a significant advantage over general purpose machines
for these types of algorithms. Apart from increased latency (which in many
applications is not important), the pipeline throughput is constant at one pixel
per cycle. The FPGA resources limit how far this approach can be taken. De-
pending on the FPGA architecture and specific type of algorithm, this can be
logic limited or memory limited. Once this limit is reached, multiple passes of
the data will be required to execute further instructions.
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1.0.5 Automatic Target Recognition

One application where FPGA resources are often not sufficient to implement
the maximal throughput pipeline is template matching for Automatic Tar-
get Recognition. In template matching the neighborhood function kernel is
a small sub-image from the original image or from a related image and the
neighborhood function calculates a distance metric, like correlation, between
the sub-image and the original image at all pixel locations. Typically there
are a large number of templates, or kernels, and the problem is to find the
template with the best match at each pixel location. In practical systems the
number of templates often far exceeds what can be matched in parallel with
Reconfigurable Hardware. For example, an ATR algorithm developed for syn-
thetic aperture radar by Sandia National Laboratory has approximately 5700
templates associated with each target. With tens or hundreds of targets, it
becomes clear that a practical implementation will require a number of passes.

The most efficient hardware utilization is gained by customizing the FPGA
for each pass with the configuration bit-stream. This is often appropriate when
each pass of the data performs a significantly different type of processing,
however the approach can also be used to generate optimal specializations of a
generic pipeline. For example, Chia et.al. have produced an ATR system called
Mojave that produces specialized matching circuits for different templates [6].
They call their approach partial evaluation, and it exploits several properties
of the Sandia application:

• The templates are sparse so not all neighborhood pixels are involved in the
correlation. Chia et. al. estimate that for approximately half the templates
this approach uses 5.8% of the resources used in a general purpose circuit.

• Many templates share common pixels and therefore share partial results
in the correlation.

The Mojave system provides a number of CAD tools that can automati-
cally perform the above optimizations for a given set of templates. The system
matches 8 by 8 templates against a 128 by 128 video image and was able to
achieve an improvement factor between 2 and 10 over the existing ASIC im-
plementation. Device reconfiguration is an attractive approach to multiple
pass image processing. The approach is unique to Reconfigurable Computing
and it can lead to significant performance improvements. One disadvantage
of the approach is that it depends on being able to rapidly reconfigure the
FPGA. The Mojave system is based on the Xilinx 4013PG233-4 FPGA which
requires 30ms to reconfigure. In comparison, the FPGA processes 4 templates
in parallel and takes 16ms for 1 pass. The net result is a system that takes
46ms to evaluate 4 templates.

Another way to implement multiple pass hardware specializations is with
partial reconfiguration. In many image processing applications, the image
pipeline can have very similar implementation requirements from one pass
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Fig. 1.7. Localized reconfiguration.

to the next. Computations are often typically regular this means implementa-
tion difference can be localized and reconfiguration time minimized. Figure 1.7
illustrates the concept. This approach was used for the Sandia ATR applica-
tion by Bellows and Hutchings [2]. They targeted the rapidly reconfigurable
Xilinx XC6200 series FPGA. Using placement constraints they arranged a 2-D
systolic array of processors with static interconnect. At run-time the function
of these processors is specialized based on a particular template that is being
matched. The hardware efficiency of this approach can be very close to that
achieved by a complete re-synthesis. The disadvantage of the approach is tied
to the limited partial reconfiguration capabilities of most commercial FPGAs.
For example, to manipulate the routing to select which inputs are supplied to
a neighborhood function is difficult with most FPGA devices.

The alternative to FPGA based partial reconfiguration is to build the
multi-pass variability into the hardware design itself. This involves increasing
the complexity of the design to include the required variability, and provide
on-chip configuration registers with an appropriate interface. Rencher and
Hutchings used this approach when implementing the Sandia ATR application
on the Splash 2. They implemented a single general purpose matching algo-
rithm for a 16 by 16 template. Each template was loaded from local memory
to on-chip registers where it was matched with the input image using a deep
image processing pipeline. A control circuit monitored the match from each
pass and maintained a record of the best template. Rencher and Hutchings
estimated their design running at 13.2 MHz outperformed a HP 770 running
at 110 MHz by two orders of magnitude. Building custom configuration cir-
cuits can be extended to any level of flexibility e.g. configuration registers can
store program instructions for an arithmetic logic unit or a micro-controller.
Typically, this approach will be most resource efficient when the multi-pass
variability is localized and configuration circuits are tailored to the problem
at hand.

1.0.6 Image Matching

Area based image matching is another class of local neighborhood algorithm
that is used extensively in low level image processing. With stereo cameras,
two cameras are used to image a scene from two different locations so that
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a physical point appears in different locations in each camera image. From
the difference in location (called the disparity), the depth of the point can be
calculated. In video cameras, object or camera motion produces a similar effect
and the difference in location (called the displacement) can be used to estimate
a motion vector. The image matching problem is find the corresponding points
in each image. In area based matching techniques, a point to be matched
becomes the centre of a neighborhood. The matching problem involves finding
a similarly sized neighborhood in the second image that is the best match
for the neighborhood in the first image. Figure 1.8a illustrates the matching
problem for a single pixel. The procedure is repeated for every pixel in the
template image.

Some popular metrics for matching include the sum of squared (SSD) and
sum of absolute differences (SAD), as well as the normalized cross correlation
(NCC):

F (i, j) =

∑
(k,l)∈K Wk,l ∗ Image(i− k, j − l)√∑

(k,l)∈K W 2
k,l ∗

∑
(k,l)∈K Image2(i− k, j − l)

(1.2)

Several metrics have been suggested that aim to provide the accuracy of
NCC with less expense. A method that is particularly appropriate in FPGA
implementations is to use the relative ordering of the pixel intensities to cal-
culate similarity [30]. Images are first transformed according to local neigh-
borhoods. In the rank transform each pixel intensity is replaced by an integer
that represents the number of pixels within a neighborhood whose value is
less than the centre pixel. The census transform replaces each pixel with a bit
string which encodes the neighborhood pixels according to their location. If a
pixel value is less than the centre pixel the corresponding position in the bit
string is set to 1, otherwise it is set to 0. Once the images have been trans-
formed, points are matched by using the traditional area based methods. The
rank transform typically uses the SAD or SSD similarity metric while the
census uses a metric based on the hamming distance between the two bit
vectors. We estimate the rank matching metric consumes approximately 50%
fewer resources than SSD and at least 75% fewer resources than NCC. This
is mainly due to the smaller data width of the rank metric output[19].

Image matching and template matching are in some ways similar. In both
algorithms there are a very large number of templates, and the problem is to
find the template with the best match. There are also two significant differ-
ences:

1. For image matching the template has a search window that is typically
much smaller than the original image. In template matching each template
is matched at every location in the entire image.

2. In image matching the templates are local neighborhoods taken from ev-
ery pixel location in the template image, which means consecutive tem-
plates have overlapping values. In template matching each template may
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Fig. 1.8. Searching for the best match in a) the general case and b) in the epipolar
constrained case

be completely different from every other template. When templates do
have overlap (as in the Sandia application) it is template specific.

Fig. 1.9. A real-time matching architecture.

These differences suggest an alternative approach to implementation for
image matching which is illustrated in Figure 1.9. The two image pixels
streams arrive at the same time but then are displaced from one another
by varying degrees via delay elements. Images can be displaced horizontally
via registers, but require row-length shift registers to be displaced vertically.
Often in stereo matching the two cameras are mounted carefully to ensure
that the two scan lines are in correspondence. If this is the case then the
displacement can be assumed to lie on the same horizontal line which greatly
reduces the search window as illustrated in Figure 1.8b.

Most metrics used in matching, such as SAD, SSD, NCC and the Hamming
distance, are based on a neighborhood summation which can be calculated
in two steps. We first we calculate a distance image based on a pixel wise
distance metric between the two displaced images. We then accumulate the
distance image within a local neighborhood. This can be computed with the
convolution function as in Figure 1.4, or since there are redundant additions
(due to equal weights in the convolution), it can be computed with running



1 Image Processing 15

totals [11]. Neighborhood summation with running totals allows much larger
neighborhoods to be accumulated and is a two-stage process:

1. Calculate row sums: A new row sum is calculated from the previous row
sum by adding the new pixel and subtracting the last pixel. The row sum
calculation is easily pipelined with a neighborhood row shift register and
an adder / subtractor.

2. Calculate column sums: This is similar to the first step but instead of ac-
cumulating and subtracting pixels we accumulate and subtract row sums.
The number of running totals is equal to the image width. Since the row
sums are being calculated in scan line order a large shift register is re-
quired to subtract the last row sum within the pipeline. One way to avoid
this shift register is to introduce redundant additions so that the last row
sum is calculated at the same time as the first row sum [10]. Figure 1.10
illustrates the main components required in calculating the column sums.
The running totals are kept in memory and accessed sequentially as new
row sums are generated.

Fig. 1.10. Calculating the running totals.

To produce the final output the neighborhood sums from the various dis-
tance images are compared. The displacement with the smallest sum (except
for the NCC metric for which we choose the largest) corresponds to the best
match in the search area. The implementation described has been used by
several researchers to obtain real-time depth maps from stereo cameras [10],
[28]. As far as we know the architecture has not been used for motion esti-
mation on FPGAs. This is probably because of the large amount of memory
that is required to search for vertically displaced neighborhoods, which until
recently would have made real-time implementation infeasible. In addition,
most Reconfigurable Computer implementations for motion estimation target
block matching algorithms used in video compression [22]. In these algorithms
matching neighborhoods are usually non-overlapping which means only a sub-
set of the pixels within the template image are matched. This leads to different
opportunities for optimization and therefore different implementations.



16 1 Image Processing

1.0.7 Evolutionary Image Processing

In image processing we often define an error, or loss function that measures
how well a particular algorithm solves the problem of interest. The task is then
to find, through optimization, the algorithm that minimizes this loss function
and is therefore in some sense optimal. Optimal image processing algorithms
are generally able to outperform fixed algorithms since they are tuned for
the specific data and task at hand. Many of the standard image processing
algorithms, such as convolution, morphology and matching are used in opti-
mal image processing e.g. in optimal image enhancement we replace a fixed
convolution kernel like Gaussian smoothing with convolution weights that are
optimized to minimize a mean squared error. Another much studied optimal
image processing problem is pattern recognition where the error function is
based on detection and false alarm rates.

Reconfigurable Computers are particularly useful in implementing opti-
mization problems since the implementation requirements of optimization
problems vary greatly from one problem to the next [1]. Evolutionary Al-
gorithms (EA), define a family of optimization techniques for which this is
particularly true. EA include genetic algorithms, genetic programming, evo-
lutionary programming and evolutionary strategies. They are one of the most
flexible optimization techniques in use today, and have been applied to a va-
riety of research, industrial and commercial problem solving activities [7]. EA
optimization is based on sample and test. A large number of candidate solu-
tions are generated randomly. Each candidate is evaluated and assigned fitness
by applying the solution to a training set and calculating the loss function.
Based on this fitness, the population of candidate solutions is resampled, and
the process repeats until candidates achieve a desired level of performance. EA
can be applied to many problems in image processing but it is very compu-
tationally intensive. Each candidate evaluation is typically a complete pass of
an image processing pipeline, and a large number of evaluations are required.

One of the most effective ways to use a Reconfigurable Computer for evo-
lutionary image processing is as a fitness evaluator. The basic architecture is
shown in Figure 1.11. An application specific image pipeline is implemented in
much the same way as in conventional image processing. We then add a simple
control structure that compares the pipeline output to a desired output and
calculates the error function. Note, if the pipeline exploits pixel parallelism
it is likely that multiple error functions will be implemented in parallel. The
pipeline must be used to evaluate many different candidates and therefore
it requires a second level of configurability appropriate to the optimization
problem. Similar to the ATR example, this can be implemented with partial
reconfiguration, and / or with custom configuration circuits as illustrated in
Figure 1.11.

Apart from fitness evaluation, the evolutionary algorithm itself is a very
simple algorithm and could be implemented onboard the Reconfigurable Com-
puter. Sidhu et.al. describe a genetic programming pipeline implemented on a
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Fig. 1.11. A fitness evaluator architecture for evolutionary image processing.

XC6264 FPGA which obtains speed-up of 19 compared to a 200MHz Pentium
Pro for an arithmetic regression problem, and three orders of magnitude for
a logic-based multiplexer problem [25]. For the image processing application
domain the computation time for the fitness evaluation usually far exceeds the
computation time of the EA. In a co-processor environment, where the Recon-
figurable Computer sits on a host processor bus, it is typically not necessary
to implement the EA in hardware.

Fig. 1.12. Hardware / software portioning for evolutionary image processing.
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Using the Reconfigurable Computer as a co-processor generally implies a
low bandwidth connection between the reconfigurable computer and the host
processor. To minimize communication across this connection it is important
to calculate the error function on chip. Figure 1.12 illustrates the ideal ar-
rangement. Large volume input data and training data are loaded once at
the start of optimization to the RCC local memory. Communication between
host and the RCC during optimization involves writing to on-chip pipeline
configuration registers, initiating the pipeline evaluation, and then retrieving
the output error. Only at the end of optimization, is the result image from
the lowest error pipeline retrieved for inspection.

Recently, in a field known as evolvable hardware, we observe an interest-
ing consequence of approaching image processing as an optimization problem.
The idea is to use evolutionary algorithms to explore non-tradition parameter-
izations of image processing problems to produce solutions with more efficient
FPGA implementations. One of the first applications of evolvable hardware to
image processing involved optimizing a variable-length encoded PLD AND-
OR array to solve a binary character recognition problem[14]. Many other
examples of this approach have now been published [9], [29], [24]. Evolvable
hardware researchers have devloped many novel image processing algorithms
by optimizing collections of low-level building blocks similar to FPGA logic
cells. This approach can produce extremely compact solutions, but will pro-
duce little speed-up over general purpose machines unless a large number of
these functions are implemented in parallel. This observation led us to de-
velop a system called Pooka, which combines evolutionary image processing
with a Reconfigurable Computer coprocessor to solve scene classification and
terrain mapping problems in satellite imagery [20]. In the Pooka system we
explore a much more abstract parameterization of neighborhood functions,
and focus on finding solutions that combine multiple copies of these functions
within a deep processing pipeline. The net result is a system that can solve
complex practical problems and obtain significant speed-up compared to a
general purpose processor.

The Pooka pipeline is illustrated in Figure 1.13. There are 18 highly
pipelined functions (or layers): 9 of these functions are used to combine multi-
ple spectral channels and their spatial neighborhood is one pixel. The remain-
ing 9 functions implement functions of a 5 by 5 neighborhood. The pipeline
can have up to 16 different inputs. In Figure 1.13 the input imagery has
4 spectral channels but in multi-spectral imagery this can be much larger.
The connectivity at the pipeline input and between processing layers is made
configurable through large multiplexers which are controlled by the on-chip
configuration registers. The basic building block within the Pooka system has
two inputs (a and b) and one output which are all 8 bit 2s complement inte-
gers. A three bit configuration register dictates which one of eight functions
the building block implements. These functions are summarized in Table 1.1.

In each spatial layer there are 24 configurable building blocks. In each
spectral layer there are 3 configurable building blocks. The connectivity be-
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Fig. 1.13. A 18 layer image pipeline for multi-spectral image classification.

Function Operation

Average a+b
2

Difference a−b
2

Absolute Average |a+b
2

|
Absolute Difference |a−b

2
|

Maximum Max{a, b}
Minimum Min{a, b}
Select Left a

Select Right b

Table 1.1. The Pooka configurable building block.
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tween blocks is largely hard coded and is described with other implementation
details in Porter et. al . [20]. We implemented the Pooka system on a Firebird
reconfigurable computer from Annapolis Microsystems [13]. This is a 64-bit,
66MHz PCI co-processor that contains a Xilinx Virtex 2000E FPGA, and a
total of 36Mbytes of on-board memory distributed in 5 independent banks.
The 18-layer network used 64% of the FPGA logic and 35% of the block ram
post place and route and could be clocked at 50MHz.

During evolution the Pooka system obtains speed-up of three orders of
magnitude over a software simulation running on a 500MHz Pentium III work-
station. This is attributed to the fact that Pooka is based on a configurable
building block that is efficiently implemented in hardware but inefficiently in
software. In hardware, the configurable building block network is completely
pipelined and is carefully hand designed to make the best use of Virtex FPGA
resources. In software, the 24 configurable building block network requires
many conditional assignments, all within nested loops. The software compiler
has few optimizations available to it and the performance is poor. A possibly
more meaningful measure of performance can be estimated by considering a
high-level approximation of Pooka components. For each Spectral layer in the
pipeline, a linear combination is calculated. For each Spatial layer, a 5 by 5
neighborhood average is calculated. The relative speed-up in this case was es-
timated at two orders of magnitude, however the software implementation is
slightly simpler (but has greater bit-widths) than the Pooka implementation.

The speed-up achieved by Reconfigurable co-processors in evolutionary
image processing can be close to that achieved in real-time reconfigurable
computing systems. This is because there is very little communication between
the host and Reconfigurable Computer during optimization. Image data is
always on-time (since it is stored in local memory) and the image pipeline
operates almost continuously at peak capacity. However, once the optimization
is complete, the performance of the optimized image pipeline in application
will depend on several factors which are typically related to data I/O. In
the Pooka system, optimized pipelines are typically applied to large satellite
images (2 to 4 GigaByte images) that are stored on the host computer hard
disk. Therefore, the execution time for the Pooka system must include the
time required to read data and write results to disk, as well as the time to
transfer data to and from the coprocessor across the PCI bus. We found this
overhead reduced the 100x speed-up by a factor of 10.

1.1 Summary

The local, regular nature of local neighborhood functions, which are used
extensively in image processing, provide many opportunities to exploit paral-
lelism. Image data is inherently parallel, and local neighborhoods have con-
siderable overlap from one pixel to the next. Image algorithms are inherently
parallel and are often implemented with long sequences of basic operations.
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Combined, this means hardware engineers have a rich design space with many
degrees of freedom. In many ways, the high performance implementations of
image processing algorithms that have been reported are due to this flexibil-
ity in design space. The hardware engineer can choose the type and level or
parallelization appropriate to the Reconfigurable Computer at hand based on
number of gates and on-chip / off-chip memory bandwidth. Not many other
applications have this luxury.

In this chapter we have described prototypical architectural solutions to
several image processing problems. In practice, the implementation details
of these implementations for specific Reconfigurable Computers can greatly
affect performance, and therefore, exploring the design space with the spe-
cific resource constraints is very important. Optimization under resource con-
straints is often what makes hardware design hard for humans. Given the
many degrees of freedom in image processing, optimal solutions are likely to
remain hard for automated resource allocation tools and techniques as well. As
computational capacity and memory bandwidth increase, we speculate that
non-optimal, but sufficient solutions will become acceptable, simplifying the
problem for both humans and machine.





References

1. D. Abramson, A.d. Silva, M. Randall, and A. Posutla, Special purpose computer
architectures for high speed optimisation, Second Australasian Conference on
Parallel and Real Time Systems, 1995.

2. Peter Bellows and Brad Hutchings, Designing run-time reconfigurable systems
with jhdl, Journal of VLSI Signal Processing 28 (2001).

3. K. Benkrid, D. Crookes, and A. Benkrid, Towards a general framework for fpga
based image processing using hardware skeletons, Parallel Computing 28 (2002).

4. Bernard Bosi, Guy Bois, and Yvon Savaria, Reconfigurable pipelined 2-d con-
volvers for fast digital signal processing, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 7 (1999), no. 3.

5. Keping Chen, Bit-serial realizations of a class of nonlinear filters based on pos-
itive boolean functions, IEEE Transactions on Circuits and Systems 36 (1989),
no. 6.

6. Kang-Ngee Chia, Hea Joung Kim, Shane Lansing, William H. Mangione-Smith,
and John Villasenor, High-performance automatic target recognition through
data-specific vlsi, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 6 (1998), no. 3.

7. D. Dasgupta and Z. Michalewicz, Evolutionary algorithms in engineering appli-
cations, Springer-Verlag, Berlin, 1997.

8. Bruce A. Draper, Ross Beveridge, A.P. Willem Böhm, Charles Ross, and Monica
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